
CS6200
Information Retrieval

Jesse Anderton
College of Computer and Information Science

Northeastern University

Commercial Search

Commercial Search
• We have focused so far on a high

level overview of Information
Retrieval, but how does it apply
to specific companies?

• Ranking has many applications:

➡ Document search and filtering

➡ Product recommendation

➡ Suggesting social connections

• Businesses also employ many
other IR tasks.

Case Studies
• Let’s go through a few case studies to see how we

can pull together various ideas into a more
complete product.

• The ideas presented here are often somewhat
incomplete, and don’t necessarily represent how
any particular company’s system actually works.

• The idea is to show a portion of the product
development process.

Ranking a Feed

Ranking a Feed | Making a Suggestion
Data Storage at Scale | Task Distribution

Let’s build a social network!
• Our users create posts with text, pictures, and links, and can

subscribe to other users’ feeds.

• We show users a feed of content from other users.

• We make our money when users follow links.

• In order to drive clicks to those links, we want lots of users
linked to lots of friends discussing lots of posts. User
engagement drives up revenue.

• Our business problem: how should we rank the posts in a given
user’s feed to maximize our revenue and their engagement?

Let’s build a profitable
social network!

• We want our ranking to have
the following properties:

➡ Prefer posts from friends

➡ Prefer posts with links – but
don’t crowd out other posts

• Let’s quantify these goals, and
then combine them into a
ranking function.

Rohit V.: I wasted my whole evening
watching this crazy movie!

Amanda S.: I just had the worst day…

Justin B.: Anyone want to see my
new video?

Ranking By Probability
• We have previously ranked by generating a matching score

between a document and a query, and then sorting by that
score.

• The score can be a probability, like the probability this
document contains relevant content.

• In this case, we care about the probability a post will maximize
some function of our revenue and our users’ engagement.

• Our approach will be to choose several different probability
functions we believe to be correlated with revenue and/or
engagement, and then combine them into a score for ranking.

Posts from Friends
• This looks easy: if user A is

following user B, then show B’s
content in A’s feed.

• If A is following 100 users, who
wins? Some ideas:

➡ Prefer users who A interacts with
more (in terms of comments,
clicks, likes…)

➡ Prefer users to whom A is more
strongly connected

➡ Decide somewhat randomly, so A
has a chance of seeing everyone

A

B

D

E

F

C

Rate of Interaction
• If A interacts more with B, we should have a higher

probability of showing B’s content.

• We want more recent interactions to count more, so
we notice when A’s preferences change.

• Let’s use the number of interactions on each
particular day for the last 90 days:

Pr(user = b) /
P90

t=1 interactions(b, t)P
u2users

P90
t=1 interactions(u, t)

Connection Strength
• Three nodes A, B, and C are members of

a triangle if they form a 3-clique (see
diagram).

• A and B are more tightly connected if
they are jointly members of more
triangles.

!

!

!

• This is a simplified form of the clustering
coefficient, which measures a node’s
influence.

A

B

D

E

F

C
Pr(user = b) / strength(a, b)

strength(a, b) =

|{v 2 V :(a, v) 2 E and

(b, v) 2 E}|

Clustering Coefficient
• A node is considered more influential if more of its outgoing

links form triangles.

!

!

!

• Counting triangles in a large social network is difficult, and
many papers have been written to refine the algorithms.

• See, e.g. Counting Triangles and the Curse of the Last Reducer,
by Suri and Vassilvitskii, 2011.

Pr(user = b) / cc(b)

cc(v) =
|{(u,w) 2 E : u 2 �(v) and w 2 �(v)}|

�dv

2

�

�(v) is the set of nodes reachable from v

dv is the out-degree of v

Popular Links
• We make our money from clicks on user-posted links, so we want to

show links to everyone.

• How can we choose links which a user is likely to click? Some
ideas:

➡ A user may click links which are more popular among that user’s
friends, or among all users.

➡ A user may click links which are similar to other links the user
has posted or clicked on.

➡ These can be combined: a user may click links which are similar
to links which are popular among similar or related users. See
Collaborative Filtering, later on.

Link Similarity
• Let’s focus on links which are similar to others the user

has posted.

• We have already studied ways of measuring the
similarity between pages in detail:

➡ Use a vector space representation and measure
cosine similarity

➡ Train a topic model on the collection of documents,
and treat documents as more similar when their
distribution over topics is more similar

Link Similarity
• Topic models were covered in

the Ranking 2 lecture.

• Each document is treated as a
mixture of topics:

!

• We can measure the
difference between two
documents as KL-divergence
between their topic
distributions:

Example LDA Topics
dist(~d1, ~d2) = D(

~d1k~d2)

=

X

i

d1,i log
d1,i
d2,i

|~di| = # topics

di,j = Pr(topic = j|doc = di)

Link Crowding
• We want to show links, so we can generate

revenue, but we don’t want to only show links
because that’s bad for engagement.

• One simple way to accomplish this is to choose
weights for each post type so that, all else being
equal, we will have an “interesting” mix of post
types.

Pr(d
i

) / t
type(di)

~t = [t
links

, t
text

, t
images

]
X

i

t
i

= 1

Combining Signals
• Our ultimate goal is to combine all of these things

into a ranking score we can use to sort posts.

• We have three fundamental types of evidence:

➡ The user u who posted the content

➡ The type t of content posted

➡ The user’s engagement e with the content itself
(e.g. similarity to previously-engaging content)

Combining Signals
• Let’s combine the evidence in a Bayesian fashion:

!

!

• If we assume a uniform prior and make the Naive
Bayes assumption that the variables are
independent, we get:

Pr(di|ui, ei, ti) =
Pr(ui, ei, ti|di)Pr(di)

Pr(ui, ei, ti)

/ Pr(ui, ei, ti|di)Pr(di)

Pr(di|ui, ei, ti) / Pr(ui|di) · Pr(ei|di) · Pr(ti|di)

Combining Signals
• is the probability we’d want to highly rank

a post from this user, given that they wrote this
document.

• We combine the user’s overall influence,
connectedness to the feed’s owner, and rate of
interaction with the feed’s owner using a similar
Bayesian formula.

Pr(ui|di)

Combining Signals
• is the probability we’d want to highly rank

a post of this type, given that this document has
this type.

• Here we will simply use the overall mixture
probability we use to show an appropriate number
of links.

Pr(ti|di)

Combining Signals
• is the probability the user will be engaged,

given that they read this document.

• We combine the document’s similarity to
documents the user previously found engaging
(possibly measured in multiple ways), the
document’s popularity, the number of clicks (if the
document is a link), etc.

Pr(ei|di)

What’s Missing?
• In practice, we probably don’t want a Naive Bayes

assumption. Many of these signals are highly correlated.

• We would also like to have parameters we can tune over
time, such as the mixture of links to show or how much
influential users are preferred over users the feed owner
interacts with.

• Two of the many alternatives are to train an Inference
Network, discussed in the Retrieval 2 lecture, or to
employ Learning to Rank, covered there and in more
detail next week.

Making a Suggestion

Ranking a Feed | Making a Suggestion
Data Storage at Scale | Task Distribution

Let’s Sell Things
• Let’s imagine we work for a large

online retailer, and are asked to
create a new site.

• The site will present one product
recommendation per day, based on
the user’s history with the retailer.

• We want to find the one best
product per day, and show
something new every day.

• To keep things interesting, let’s say
that users can interact in four ways:
by purchasing the item, giving a
thumbs up, giving a thumbs down,
or ignoring the recommendation.

Today’s Pick:
A Toy Car

Buy It Hate ItLove It

Collaborative Filtering
• How can we tell what a person

might like before they’ve seen
the product?

• The answer from collaborative
filtering is: other users who
have expressed preferences
similar to our user’s
preferences can give us
evidence about the new
product.

Susan 👍 👍 👎

Hamid 👍 ❓ 👎

Cheng 👍 👎 👍

Paula 👎 👎 👍

Collaborative Filtering
• We will represent what we already know about user

preferences as a matrix:

!

!

!

• Instead of 1, you could put a rating value. For
instance, use 2 if they bought the item and 1 if they
just gave it a “thumbs up.”

U 2 Zm⇥n
for m users and n items

Ui,j =

8
<

:

1 if user i likes item j
�1 if user i dislikes item j
0 otherwise

Collaborative Filtering
• We will predict a user’s rating for an item as the

average rating given by the k most similar users.

• We will use cosine similarity to compare users:

!

• Our predicted rating, then, is:

!

where is a sorted list of users most similar to x.

sim(x, y) =

P
n

i=1 Ux,i

· U
y,iqP

n

i=1 U
2
x,i

·
qP

n

i=1 U
2
y,i

prediction(x, i) =

Pk
j=1 USj ,i

k

Sj

User Similarity
• This is just the most basic way to computer similarity between users.

• You sometimes know much more about users, and can build a more
sophisticated similarity model.

➡ You may have access to user-specific features: age, location,
price range of purchased items, interest in items from particular
cultures (e.g. books in languages other than English), and so on.

➡ You could build a more sophisticated probabilistic model
predicting whether users x and y will agree on this particular item.

➡ More simply, you could replace cosine similarity with the Pearson
correlation coefficient or some other distance function.

Item Similarity
• You can also build in information about item similarity.

➡ Instead of just using user ratings for the particular item
you’re considering, also include weights for similar items.

➡ Features here might include item category and
subcategory, price, overall popularity, popularity by
demographic, date released, etc.

➡ This helps with data sparsity – perhaps the product is
new or unpopular, and few people have bought it.

➡ You have to be careful of noisy item similarity predictions

What’s Missing?
• Collaborative Filtering is an intensely-studied topic

with many variations and applications.

• In addition to the rating predicted by collaborative
filtering, you will probably want to build a
probabilistic model based on the user you’re
choosing a product for and the item’s similarity to
other items the user has purchased or rejected.

Data Storage at Scale

Ranking a Feed | Making a Suggestion
Data Storage at Scale | Task Distribution

Internet Scale
• How many servers does an online company need?

• It varies wildly, changes constantly, and companies generally don’t report
how many servers they have. A few estimates:

➡ The biggest companies (Google, Microsoft) have over 1,000,000
servers across all their data centers.

➡ Large companies such as Facebook and Amazon generally have
hundreds of thousands of servers.

➡ “Smaller” companies such as eBay are estimated to have around
50,000 servers.

• These servers are spread around the world with thousands, or tens of
thousands, in a single data center.

Data Storage Paradigms
• Traditionally, businesses have used a

SQL database such as MySQL or
Oracle.

• Data is stored in tables with fixed
schemas. A given row has a clearly-
defined set of fields with fixed data
types.

• Data access is made efficient by
creating indexes on particular fields in
a table.

• An index is generally stored in a
single file (or is part of a larger file)
and is optimized for rapid lookups of
particular values, and rapid merging
with other indexes and tables.

Data Storage Paradigms
• All queries go to a central master

server, which can distribute large
queries across slave systems.

• As your needs grow, you have two
major options:

1. Scale up: buy bigger, more
expensive computers with higher
capacity.

2. Scale out: buy more slave
systems, and carefully design
your schema, indexes, and
queries to distribute the work
efficiently.

Master Slaves

Queries

Data Storage Paradigms
• This doesn’t work very well with massive data volumes and

query throughput.

➡ An index like Google’s is simply too big for a standard
DBMS to keep up.

➡ Focusing your company around a few large master
machines is risky – those machines will fail, and take your
whole company offline while you change to a replacement.

➡ Spending millions of dollars per machine on large scale
hardware buys you less processing and storage per dollar
than commodity hardware.

Data Storage Paradigms
• Internet companies tend, instead,

to buy huge numbers of cheap,
unreliable machines.

• This requires a new type of
database software, of which
Google’s BigTable was an early
example.

• The publicly-available products
are known as NoSQL, and include
MongoDB, Couchbase, and
others.

• NoSQL storage is a more natural
fit for MapReduce jobs.

Queries Queries

Queries Queries

Queries Queries

Couchbase
• Let’s focus on Couchbase as

our example.

• Instead of records stored in
tables, Couchbase stores a
single large, distributed set of
(key: value) pairs, which they
call “documents.”

• There is a single namespace
for all keys, so the key
typically has a prefix to
indicate the type of data
stored.

NoSQL, No Schema
• There is no schema, so different documents can contain

different fields. This provides a lot of flexibility, but requires
some defensive coding.

• For instance, just add fields when more information, such
as translations, is available.

{“_id”: “post_143”,
 “type”: “post”,
 “author”: “Jesse”,
 “content”: { “en”: “I love Google Translate”,
 “es”: “Me encanta Google Translate”,
 “ur”: “میں گوگل کے ترجمہ سے محبت”,
 “zh”: “我爱谷歌翻译”}}

Data Replication
• Each document is stored on

multiple servers, so if one server
fails the system can simply read it
from another.

• The client can typically figure out
which servers host a given
document: the server number
used is some deterministic
function of the hash code of the
key.

• The client connects directly to one
of the servers which hosts the
document needed, instead of
addressing a master server.

Finding Your Data
• You can get your data by key, and it is common for one document to

contain the keys of other documents. This is similar to foreign keys in SQL.

• It is also common for a document to contain another document inside it, as
an optimization trick to minimize document read operations.

➡ For instance, you might have a “Top 10 Comments” document, which
contains the entire contents of the 10 items listed.

➡ This might make sense if, for instance, you wanted to show the top ten
comments every time someone loads your main page: you want to
minimize the number of documents read to display the pages with
highest load.

➡ This would be strictly forbidden in traditional SQL databases, where
data is expected to be normalized.

Couchbase Views
• You can also index your documents

for rapid search by arbitrary fields.

• In Couchbase, a view/index is
defined by a MapReduce job,
written in JavaScript.

• map() transforms stored
documents into new rows with
different fields and values. It calls
emit() to report an output
document.

• reduce() can be used to calculate
aggregate values (e.g. sum, count,
min, max, etc.)

// map() — find city and salary by name
function(doc, meta) {
 emit(doc.name, [doc.city, doc.salary]);
}

NoSQL for IR
• Say you wanted to store an inverted

index in Couchbase. You might do
something like this:

➡ Store each crawled document’s raw
content and properties in a
“raw_DOCID” document.

➡ Once the document has been
normalized and tokenized, store the
result in a “doc_DOCID” document.
These documents would also contain
document-level features, such as
PageRank, a spamminess score, etc.

➡ Store the inverted list for each term
in a series of documents, sorted from
highest to lowest matching score.

“raw_doc23452”: {
 “url”: “http://www.facebook.com/…”,
 “crawled”: “2014-11-13 10:34:23 UDT”,
 “content”: “<html><head><title>…”,
 …
}
!
“doc_doc23452”: {
 “length”: 253,
 “terms”: [“cats”, “are”, “eating”, …],
 “terms_stemmed”: [“cat”, “are”, “eat”, …],
 “pagerank”: 13.44652143,
 …
}
!
“term_cat_0”: {
 “docs”: {“doc_doc23452”: 0.2304,
 “doc_doc23412”: 0.00123,
 …}}

Task Distribution

Ranking a Feed | Making a Suggestion
Data Storage at Scale | Task Distribution

MapReduce
• When your data is distributed

across many hosts, you also
want your software to be
similarly distributed.

• MapReduce is a popular
software paradigm for
distributing your work
effectively across machines. It
pairs especially well with
NoSQL style data storage
systems.

MapReduce Roots
• The MapReduce framework has its origins in functional

programming, where the map and reduce functions are
standard tools.

• map transforms each item in a list, and reduce combines
the results into some aggregate value.

• An example in Python:
In [1]: x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
!
In [2]: map(lambda i: i*i, x)
Out[2]: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
!
In [3]: reduce(lambda x,y: x+y, map(lambda i: i*i, x))
Out[3]: 385

MapReduce Workflow
• The main program will send a job to

the MapReduce system, identifying
the map, shuffle, and reduce functions
as well as the data to operate over.

• The MapReduce system creates Map
jobs on servers in your data center,
ideally choosing servers close to the
data the jobs will read.

• Each Map job emits (key, value) pairs,
which are sent by a Shuffle algorithm
to the appropriate reduce job.

• Each Reduce job gets a sequence of
all the records with a particular key.
The job combines the data and stores
the result.

Map A-F Map G-N Map O-Z

(1, {…}) (1, {…}) (2, {…})

Shuffle Shuffle Shuffle

Reduce 1 Reduce 2

O1 O2

Ex: Simple Indexing
• You could create simple inverted lists with the following jobs.

def map(docid, document):
 # docid: document ID
 # document: document contents
 for word, position in tokenize(document):
 emit(word, (docid, position))

def reduce(word, positions):
 # word: a word
 # positions: a list of (docid, pos) tuples
 invList = []
 for docid, position in positions:
 invList.append((docid, position))
 emit (word, invList)

Further Details
• Of course, it’s often more complicated than that.

• How do we partition data across map jobs?

➡ An input reader is told the entire data set you wish to operate
on.

➡ The input reader then divides the data set into smaller chunks,
ideally with each chunk living on a single host in your data farm.

➡ The input reader will create the map jobs, read the data from
storage, and invoke map as needed.

• Similarly, an output writer stores the results of the reduce jobs.

Managing State
• Remember that we are running on a large number of cheap

computers. They will break, at times, while your job is running on
them.

• When a machine fails, we want to be able to restart any Map or
Reduce jobs that were running on it without affecting the
correctness of the program.

• Map and Reduce jobs should not modify any external resources,
because they may be run many times on the same data.

• Ideally, they shouldn’t even read external resources. They should
just express a deterministic transformation from input to output.

What can be MapReduced?
• The MapReduce framework relies on the divide and

conquer approach.

• It works best for problems that are neatly separable, such
as document indexing.

• It is harder to use it for programs that use large amounts of
shared state, such as many dynamic programming tasks.

• It is also vulnerable to network latency issues, so it’s
important that an individual map or reduce job be large
enough to be worth the cost of distributing the task.

Summary
• MapReduce is a good choice for large scale

programs that fit the divide and conquer paradigm.

• NoSQL data storage systems were designed with
MapReduce in mind.

• The key is to think of each Map and Reduce job as
a deterministic transformation from input to output.
Experience with a functional language is helpful to
learn the paradigm.

