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Commercial Search
• We have focused so far on a high 

level overview of Information 
Retrieval, but how does it apply 
to specific companies? 

• Ranking has many applications: 

➡ Document search and filtering 

➡ Product recommendation 

➡ Suggesting social connections 

• Businesses also employ many 
other IR tasks.



Case Studies
• Let’s go through a few case studies to see how we 

can pull together various ideas into a more 
complete product. 

• The ideas presented here are often somewhat 
incomplete, and don’t necessarily represent how 
any particular company’s system actually works. 

• The idea is to show a portion of the product 
development process.
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Let’s build a social network!
• Our users create posts with text, pictures, and links, and can 

subscribe to other users’ feeds. 

• We show users a feed of content from other users. 

• We make our money when users follow links. 

• In order to drive clicks to those links, we want lots of users 
linked to lots of friends discussing lots of posts. User 
engagement drives up revenue. 

• Our business problem: how should we rank the posts in a given 
user’s feed to maximize our revenue and their engagement?



Let’s build a profitable 
social network!

• We want our ranking to have 
the following properties: 

➡ Prefer posts from friends 

➡ Prefer posts with links – but 
don’t crowd out other posts 

• Let’s quantify these goals, and 
then combine them into a 
ranking function.

Rohit V.: I wasted my whole evening 
watching this crazy movie!

Amanda S.: I just had the worst day…

Justin B.: Anyone want to see my 
new video?



Ranking By Probability
• We have previously ranked by generating a matching score 

between a document and a query, and then sorting by that 
score. 

• The score can be a probability, like the probability this 
document contains relevant content. 

• In this case, we care about the probability a post will maximize 
some function of our revenue and our users’ engagement. 

• Our approach will be to choose several different probability 
functions we believe to be correlated with revenue and/or 
engagement, and then combine them into a score for ranking.



Posts from Friends
• This looks easy: if user A is 

following user B, then show B’s 
content in A’s feed. 

• If A is following 100 users, who 
wins? Some ideas: 

➡ Prefer users who A interacts with 
more (in terms of comments, 
clicks, likes…) 

➡ Prefer users to whom A is more 
strongly connected 

➡ Decide somewhat randomly, so A 
has a chance of seeing everyone
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Rate of Interaction
• If A interacts more with B, we should have a higher 

probability of showing B’s content. 

• We want more recent interactions to count more, so 
we notice when A’s preferences change. 

• Let’s use the number of interactions on each 
particular day for the last 90 days:

Pr(user = b) /
P90

t=1 interactions(b, t)P
u2users

P90
t=1 interactions(u, t)



Connection Strength
• Three nodes A, B, and C are members of 

a triangle if they form a 3-clique (see 
diagram). 

• A and B are more tightly connected if 
they are jointly members of more 
triangles. 

!

!

!

• This is a simplified form of the clustering 
coefficient, which measures a node’s 
influence.
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Pr(user = b) / strength(a, b)

strength(a, b) =

|{v 2 V :(a, v) 2 E and

(b, v) 2 E}|



Clustering Coefficient
• A node is considered more influential if more of its outgoing 

links form triangles. 

!

!

!

• Counting triangles in a large social network is difficult, and 
many papers have been written to refine the algorithms. 

• See, e.g. Counting Triangles and the Curse of the Last Reducer, 
by Suri and Vassilvitskii, 2011.

Pr(user = b) / cc(b)

cc(v) =
|{(u,w) 2 E : u 2 �(v) and w 2 �(v)}|

�dv

2

�

�(v) is the set of nodes reachable from v

dv is the out-degree of v



Popular Links
• We make our money from clicks on user-posted links, so we want to 

show links to everyone. 

• How can we choose links which a user is likely to click? Some 
ideas: 

➡ A user may click links which are more popular among that user’s 
friends, or among all users. 

➡ A user may click links which are similar to other links the user 
has posted or clicked on. 

➡ These can be combined: a user may click links which are similar 
to links which are popular among similar or related users. See 
Collaborative Filtering, later on.



Link Similarity
• Let’s focus on links which are similar to others the user 

has posted. 

• We have already studied ways of measuring the 
similarity between pages in detail: 

➡ Use a vector space representation and measure 
cosine similarity 

➡ Train a topic model on the collection of documents, 
and treat documents as more similar when their 
distribution over topics is more similar



Link Similarity
• Topic models were covered in 

the Ranking 2 lecture. 

• Each document is treated as a 
mixture of topics: 

!

• We can measure the 
difference between two 
documents as KL-divergence 
between their topic 
distributions: 

Example LDA Topics
dist(~d1, ~d2) = D(

~d1k~d2)

=

X

i

d1,i log
d1,i
d2,i

|~di| = # topics

di,j = Pr(topic = j|doc = di)



Link Crowding
• We want to show links, so we can generate 

revenue, but we don’t want to only show links 
because that’s bad for engagement. 

• One simple way to accomplish this is to choose 
weights for each post type so that, all else being 
equal, we will have an “interesting” mix of post 
types.

Pr(d
i

) / t
type(di)

~t = [t
links

, t
text

, t
images

]
X

i

t
i

= 1



Combining Signals
• Our ultimate goal is to combine all of these things 

into a ranking score we can use to sort posts. 

• We have three fundamental types of evidence: 

➡ The user u who posted the content 

➡ The type t of content posted 

➡ The user’s engagement e with the content itself 
(e.g. similarity to previously-engaging content)



Combining Signals
• Let’s combine the evidence in a Bayesian fashion: 

!

!

• If we assume a uniform prior and make the Naive 
Bayes assumption that the variables are 
independent, we get:

Pr(di|ui, ei, ti) =
Pr(ui, ei, ti|di)Pr(di)

Pr(ui, ei, ti)

/ Pr(ui, ei, ti|di)Pr(di)

Pr(di|ui, ei, ti) / Pr(ui|di) · Pr(ei|di) · Pr(ti|di)



Combining Signals
•               is the probability we’d want to highly rank 

a post from this user, given that they wrote this 
document. 

• We combine the user’s overall influence, 
connectedness to the feed’s owner, and rate of 
interaction with the feed’s owner using a similar 
Bayesian formula.

Pr(ui|di)



Combining Signals
•               is the probability we’d want to highly rank 

a post of this type, given that this document has 
this type. 

• Here we will simply use the overall mixture 
probability we use to show an appropriate number 
of links.

Pr(ti|di)



Combining Signals
•               is the probability the user will be engaged, 

given that they read this document. 

• We combine the document’s similarity to  
documents the user previously found engaging 
(possibly measured in multiple ways), the 
document’s popularity, the number of clicks (if the 
document is a link), etc.

Pr(ei|di)



What’s Missing?
• In practice, we probably don’t want a Naive Bayes 

assumption. Many of these signals are highly correlated. 

• We would also like to have parameters we can tune over 
time, such as the mixture of links to show or how much 
influential users are preferred over users the feed owner 
interacts with. 

• Two of the many alternatives are to train an Inference 
Network, discussed in the Retrieval 2 lecture, or to 
employ Learning to Rank, covered there and in more 
detail next week.



Making a Suggestion
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Let’s Sell Things
• Let’s imagine we work for a large 

online retailer, and are asked to 
create a new site. 

• The site will present one product 
recommendation per day, based on 
the user’s history with the retailer. 

• We want to find the one best 
product per day, and show 
something new every day. 

• To keep things interesting, let’s say 
that users can interact in four ways: 
by purchasing the item, giving a 
thumbs up, giving a thumbs down, 
or ignoring the recommendation.

Today’s Pick:
A Toy Car

Buy It Hate ItLove It



Collaborative Filtering
• How can we tell what a person 

might like before they’ve seen 
the product? 

• The answer from collaborative 
filtering is: other users who 
have expressed preferences 
similar to our user’s 
preferences can give us 
evidence about the new 
product.

Susan 👍 👍 👎

Hamid 👍 ❓ 👎

Cheng 👍 👎 👍

Paula 👎 👎 👍



Collaborative Filtering
• We will represent what we already know about user 

preferences as a matrix: 

!

!

!

• Instead of 1, you could put a rating value. For 
instance, use 2 if they bought the item and 1 if they 
just gave it a “thumbs up.”

U 2 Zm⇥n
for m users and n items

Ui,j =

8
<

:

1 if user i likes item j
�1 if user i dislikes item j
0 otherwise



Collaborative Filtering
• We will predict a user’s rating for an item as the 

average rating given by the k most similar users. 

• We will use cosine similarity to compare users: 

!

• Our predicted rating, then, is: 

!

where      is a sorted list of users most similar to x.

sim(x, y) =

P
n

i=1 Ux,i

· U
y,iqP

n

i=1 U
2
x,i

·
qP

n

i=1 U
2
y,i

prediction(x, i) =

Pk
j=1 USj ,i

k

Sj



User Similarity
• This is just the most basic way to computer similarity between users. 

• You sometimes know much more about users, and can build a more 
sophisticated similarity model. 

➡ You may have access to user-specific features: age, location, 
price range of purchased items, interest in items from particular 
cultures (e.g. books in languages other than English), and so on. 

➡ You could build a more sophisticated probabilistic model 
predicting whether users x and y will agree on this particular item. 

➡ More simply, you could replace cosine similarity with the Pearson 
correlation coefficient or some other distance function.



Item Similarity
• You can also build in information about item similarity. 

➡ Instead of just using user ratings for the particular item 
you’re considering, also include weights for similar items. 

➡ Features here might include item category and 
subcategory, price, overall popularity, popularity by 
demographic, date released, etc. 

➡ This helps with data sparsity – perhaps the product is 
new or unpopular, and few people have bought it. 

➡ You have to be careful of noisy item similarity predictions



What’s Missing?
• Collaborative Filtering is an intensely-studied topic 

with many variations and applications. 

• In addition to the rating predicted by collaborative 
filtering, you will probably want to build a 
probabilistic model based on the user you’re 
choosing a product for and the item’s similarity to 
other items the user has purchased or rejected.
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Internet Scale
• How many servers does an online company need? 

• It varies wildly, changes constantly, and companies generally don’t report 
how many servers they have. A few estimates: 

➡ The biggest companies (Google, Microsoft) have over 1,000,000 
servers across all their data centers. 

➡ Large companies such as Facebook and Amazon generally have 
hundreds of thousands of servers. 

➡ “Smaller” companies such as eBay are estimated to have around 
50,000 servers. 

• These servers are spread around the world with thousands, or tens of 
thousands, in a single data center.



Data Storage Paradigms
• Traditionally, businesses have used a 

SQL database such as MySQL or 
Oracle. 

• Data is stored in tables with fixed 
schemas. A given row has a clearly-
defined set of fields with fixed data 
types. 

• Data access is made efficient by 
creating indexes on particular fields in 
a table. 

• An index is generally stored in a 
single file (or is part of a larger file) 
and is optimized for rapid lookups of 
particular values, and rapid merging 
with other indexes and tables.



Data Storage Paradigms
• All queries go to a central master 

server, which can distribute large 
queries across slave systems. 

• As your needs grow, you have two 
major options: 

1. Scale up: buy bigger, more 
expensive computers with higher 
capacity. 

2. Scale out: buy more slave 
systems, and carefully design 
your schema, indexes, and 
queries to distribute the work 
efficiently.

Master Slaves

Queries



Data Storage Paradigms
• This doesn’t work very well with massive data volumes and 

query throughput. 

➡ An index like Google’s is simply too big for a standard 
DBMS to keep up. 

➡ Focusing your company around a few large master 
machines is risky – those machines will fail, and take your 
whole company offline while you change to a replacement. 

➡ Spending millions of dollars per machine on large scale 
hardware buys you less processing and storage per dollar 
than commodity hardware.



Data Storage Paradigms
• Internet companies tend, instead, 

to buy huge numbers of cheap, 
unreliable machines. 

• This requires a new type of 
database software, of which 
Google’s BigTable was an early 
example. 

• The publicly-available products 
are known as NoSQL, and include 
MongoDB, Couchbase, and 
others. 

• NoSQL storage is a more natural 
fit for MapReduce jobs.

Queries Queries

Queries Queries

Queries Queries



Couchbase
• Let’s focus on Couchbase as 

our example. 

• Instead of records stored in 
tables, Couchbase stores a 
single large, distributed set of 
(key: value) pairs, which they 
call “documents.” 

• There is a single namespace 
for all keys, so the key 
typically has a prefix to 
indicate the type of data 
stored.



NoSQL, No Schema
• There is no schema, so different documents can contain 

different fields. This provides a lot of flexibility, but requires 
some defensive coding. 

• For instance, just add fields when more information, such 
as translations, is available.

{“_id”: “post_143”, 
 “type”: “post”, 
 “author”: “Jesse”, 
 “content”: { “en”: “I love Google Translate”, 
                   “es”: “Me encanta Google Translate”, 
                   “ur”: “میں گوگل کے ترجمہ سے محبت”, 
                   “zh”: “我爱谷歌翻译”}} 



Data Replication
• Each document is stored on 

multiple servers, so if one server 
fails the system can simply read it 
from another. 

• The client can typically figure out 
which servers host a given 
document: the server number 
used is some deterministic 
function of the hash code of the 
key. 

• The client connects directly to one 
of the servers which hosts the 
document needed, instead of 
addressing a master server.



Finding Your Data
• You can get your data by key, and it is common for one document to 

contain the keys of other documents. This is similar to foreign keys in SQL. 

• It is also common for a document to contain another document inside it, as 
an optimization trick to minimize document read operations. 

➡ For instance, you might have a “Top 10 Comments” document, which 
contains the entire contents of the 10 items listed. 

➡ This might make sense if, for instance, you wanted to show the top ten 
comments every time someone loads your main page: you want to 
minimize the number of documents read to display the pages with 
highest load. 

➡ This would be strictly forbidden in traditional SQL databases, where 
data is expected to be normalized.



Couchbase Views
• You can also index your documents 

for rapid search by arbitrary fields. 

• In Couchbase, a view/index is 
defined by a MapReduce job, 
written in JavaScript. 

• map() transforms stored 
documents into new rows with 
different fields and values. It calls 
emit() to report an output 
document. 

• reduce() can be used to calculate 
aggregate values (e.g. sum, count, 
min, max, etc.)

// map() — find city and salary by name 
function(doc, meta) { 
  emit(doc.name, [doc.city, doc.salary]); 
}



NoSQL for IR
• Say you wanted to store an inverted 

index in Couchbase. You might do 
something like this: 

➡ Store each crawled document’s raw 
content and properties in a 
“raw_DOCID” document. 

➡ Once the document has been 
normalized and tokenized, store the 
result in a “doc_DOCID” document. 
These documents would also contain 
document-level features, such as 
PageRank, a spamminess score, etc. 

➡ Store the inverted list for each term 
in a series of documents, sorted from 
highest to lowest matching score.

“raw_doc23452”: { 
  “url”: “http://www.facebook.com/…”, 
  “crawled”: “2014-11-13 10:34:23 UDT”, 
  “content”: “<html><head><title>…”, 
  … 
} 
!
“doc_doc23452”: { 
  “length”: 253, 
  “terms”: [“cats”, “are”, “eating”, …], 
  “terms_stemmed”: [“cat”, “are”, “eat”, …], 
  “pagerank”: 13.44652143, 
  … 
} 
!
“term_cat_0”: { 
  “docs”: {“doc_doc23452”: 0.2304, 
               “doc_doc23412”: 0.00123, 
               …}}



Task Distribution
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MapReduce
• When your data is distributed 

across many hosts, you also 
want your software to be 
similarly distributed. 

• MapReduce is a popular 
software paradigm for 
distributing your work 
effectively across machines. It 
pairs especially well with 
NoSQL style data storage 
systems.



MapReduce Roots
• The MapReduce framework has its origins in functional 

programming, where the map and reduce functions are 
standard tools. 

• map transforms each item in a list, and reduce combines 
the results into some aggregate value. 

• An example in Python:
In [1]: x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
!
In [2]: map(lambda i: i*i, x) 
Out[2]: [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 
!
In [3]: reduce(lambda x,y: x+y, map(lambda i: i*i, x)) 
Out[3]: 385 



MapReduce Workflow
• The main program will send a job to 

the MapReduce system, identifying 
the map, shuffle, and reduce functions 
as well as the data to operate over. 

• The MapReduce system creates Map 
jobs on servers in your data center, 
ideally choosing servers close to the 
data the jobs will read. 

• Each Map job emits (key, value) pairs, 
which are sent by a Shuffle algorithm 
to the appropriate reduce job. 

• Each Reduce job gets a sequence of 
all the records with a particular key. 
The job combines the data and stores 
the result.

Map A-F Map G-N Map O-Z

(1, {…}) (1, {…}) (2, {…})

Shuffle Shuffle Shuffle

Reduce 1 Reduce 2

O1 O2



Ex: Simple Indexing
• You could create simple inverted lists with the following jobs.

def map(docid, document): 
  # docid: document ID 
  # document: document contents 
  for word, position in tokenize(document): 
    emit(word, (docid, position))

def reduce(word, positions): 
  # word: a word 
  # positions: a list of (docid, pos) tuples 
  invList = [] 
  for docid, position in positions: 
    invList.append((docid, position)) 
 emit (word, invList)



Further Details
• Of course, it’s often more complicated than that. 

• How do we partition data across map jobs? 

➡ An input reader is told the entire data set you wish to operate 
on. 

➡ The input reader then divides the data set into smaller chunks, 
ideally with each chunk living on a single host in your data farm. 

➡ The input reader will create the map jobs, read the data from 
storage, and invoke map as needed. 

• Similarly, an output writer stores the results of the reduce jobs.



Managing State
• Remember that we are running on a large number of cheap 

computers. They will break, at times, while your job is running on 
them. 

• When a machine fails, we want to be able to restart any Map or 
Reduce jobs that were running on it without affecting the 
correctness of the program. 

• Map and Reduce jobs should not modify any external resources, 
because they may be run many times on the same data. 

• Ideally, they shouldn’t even read external resources. They should 
just express a deterministic transformation from input to output.



What can be MapReduced?
• The MapReduce framework relies on the divide and 

conquer approach. 

• It works best for problems that are neatly separable, such 
as document indexing. 

• It is harder to use it for programs that use large amounts of 
shared state, such as many dynamic programming tasks. 

• It is also vulnerable to network latency issues, so it’s 
important that an individual map or reduce job be large 
enough to be worth the cost of distributing the task.



Summary
• MapReduce is a good choice for large scale 

programs that fit the divide and conquer paradigm. 

• NoSQL data storage systems were designed with 
MapReduce in mind. 

• The key is to think of each Map and Reduce job as 
a deterministic transformation from input to output. 
Experience with a functional language is helpful to 
learn the paradigm.


